# The sintering behavior and microwave dielectric properties of Mg<sub>4</sub>(Nb,Sb)<sub>2</sub>O<sub>9</sub> ceramics

P. Liu · W.A. Su · G.G. Yao · X.B. Bian

Published online: 13 September 2007 © Springer Science + Business Media, LLC 2007

Abstract The sintering behavior, microstructure and microwave dielectric properties of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ( $0 \le x \le 2$ ) solid solutions were investigated systematically by X-ray diffraction(XRD), scanning electron microscopy(SEM) and a network analyzer. The solid solutions of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>) O<sub>9</sub> was formed with *x* value being no more than 1.6. The dielectric constant ( $\varepsilon$ ) of the sintered ceramics decreased from 13.06 to 6.28 with Sb content *x* from 0 to 1.6. With a substitution of Sb<sup>5+</sup> for Nb<sup>5+</sup> ( $0.04 \le x \le 0.08$ ), the sintering temperature of Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub> ceramics was decreased from 1400 to 1300 °C without degradation of the Qf values. The optimum microwave dielectric properties of  $\varepsilon \sim 12.26$ , Qf $\sim$  168,450 GHz, and  $\tau_{f} \sim -56.4$  ppm/°C were obtained in the composition of Mg<sub>4</sub>(Nb<sub>1.6</sub>Sb<sub>0.4</sub>)O<sub>9</sub> sintered at 1300 °C.

**Keywords** Microwave dielectric ceramic  $\cdot$  Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub>  $\cdot$  High  $Q \cdot$  Low  $\varepsilon$  value  $\cdot$  Magnesium niobate

## **1** Introduction

The development of high Q materials with a variety of dielectric constant,  $\varepsilon$ , is essential in the advancement of wireless communication industry. Thus, a number of these materials have been investigated and developed [1–5]. Among which,  $\alpha$ -A1<sub>2</sub>O<sub>3</sub> ceramics with corundum structure has a very high Q value (Qf~300,000 GHz) and low dielectric constant ( $\varepsilon$ ~10), widely used as substrate and IC packaging materials. Very recently, it was found that

 $Mg_4Nb_2O_9$  (MN) ceramics exhibited a very high Qf value comparable to  $Al_2O_3[6]$ . By a substitution of  $Ta^{5+}$  for  $Nb^{5+}$ , the Qf value of  $Mg_4Nb_2O_9$  could be further improved [6]. Thus,  $Mg_4Nb_2O_9$  is a suitable material for microwave applications, such as substrates and resonators at high frequency. In this work,  $Mg_4(Nb_{2-x}Sb_x)O_9$  ( $0 \le x \le 2$ ) solid solutions were fabricated by a conventional solid reaction method and the sintering behavior, microstructures, and microwave dielectric properties of  $Mg_4(Nb_{2-x}Sb_x)O_9$ ceramics were investigated.

# 2 Experiment procedure

Samples of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ( $0 \le x \le 2$ ) were prepared by standard electronic ceramic method. The starting materials were oxide powders: high purity MgO ( $\ge 99.9\%$ ), Nb<sub>2</sub>O<sub>5</sub> ( $\ge 99.5\%$ ) and analysis grade Sb<sub>2</sub>O<sub>5</sub> ( $\le 99.0\%$ ). The powders were weighed according to the stoichiometric ratio and then milled in a polyethylene bottle with agate balls for 10 h using alcohol as a medium. Mixtures were dried and calcined at 1000 °C for 10 h. The calcined powders were re-milled for 10 h, then ground with PVA solution as a binder and sieved through a 60-mesh screen. Pellets with 15 mm in diameter and 7 mm in thickness were pressed using uniaxial pressing. These pellets were subsequently sintered at 1300–1400 °C for 5 h in air.

The crystalline phases were analysed by X-ray powder diffraction (XRPD, Rigaku D/max 2550, Japan) using Cu K $\alpha$  radiation (at 40 Kv and 200 mA) of 2 $\theta$  from 10° to 80°. The surface microstructure of the as-sintered ceramics were observed by a scanning electron microscopy (Quanta 200 SEM, Holland). The bulk density ( $\rho$ ) of the sintered pellets was measured by the Archimedes method. The theoretical density ( $\rho_x$ ) of the ceramics was obtained by using the unit

P. Liu (⊠) · W.A. Su · G.G. Yao · X.B. Bian School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China e-mail: Liupeng68@hotmail.com



**Fig. 1** Bulk density ( $\rho$ ) and relative density ( $\rho_r$ ) of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics sintered at different temperatures for 5 h

cell dimensions from the XRPD data. The measurement of dielectric constant ( $\varepsilon$ ) and unloaded Q of Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub> ceramics was performed in T<sub>011</sub> mode at 8–11 GHz by the Hakki-Coleman dielectric resonator method [7] using a network analyzer(Agilent Tech., hp8720ES). The temperature coefficient of resonator frequency ( $\tau_f$ ) was calculated in the temperature between 20–80 °C.

#### 3 Results and discussion

The bulk density ( $\rho$ ) and relative density ( $\rho_r$ ) of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>) O<sub>9</sub> ceramics sintered at various temperatures as a function of *x* values are shown in Fig. 1. At the sintering temperature of 1300 °C, relative density  $\rho_r$  increased from 0.87 to 0.96 as *x* values from 0 to 0.4, and then,  $\rho_r$  values saturated at 0.4 $\leq$ *x* $\leq$ 1.0. As *x*>1.2,  $\rho_r$  decreased abruptly to 0.57 for *x*=1.6. This demonstrated that Sb<sup>5+</sup> substitutions for Nb<sup>5+</sup> is effective in reducing the sintering temperature of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> for 0.4 $\leq$ *x* $\leq$ 1, but suppressed the densification process as the



Fig. 2 The shrinkage of  $Mg_4(Nb_{2-x}Sb_x)O_9$  ceramics sintered at different temperatures for 5 h





Fig. 3 XRPD patterns of sintered  $Mg_4(Nb_{2-x}Sb_x)O_9$  ceramics (a) x = 0.4, (b) x=0.8, (c) x=1.0, (d) x=1.2, (e) x=1.6, (f) x=1.7, (g) x=1.8, (h) x=1.9, (i) x=2.0

compositions x>1.2. The present result is also confirmed by the radical shrinkage(s) of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics sintered at various temperatures as a function x shown in Fig. 2.

Figure 3 shows the XRPD patterns of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> with  $0 \le x \le 2$ . The formation of impurity phase was not detected in compositions with  $x \le 1.6$ , and the compounds exhibited the ordered corundum structure of Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub> (JCPDS number: 36-1381) with the space group of  $P\overline{3}c1$  (No. 165). As the composition *x* ranged from 1.7 to 1.9, two phases, i.e. Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub> and Mg<sub>11</sub>Sb<sub>4</sub>O<sub>21</sub> (JCPDS: 23-0380) were found to be co-exist, as shown in Fig. 3(f), (g), and (h), respectively. As x=2.0, the XRPD patterns were indexed as a Mg<sub>4</sub>Sb<sub>2</sub>O<sub>9</sub> phase with the JCPDS number of 23-0378. The lattice parameters, *a*, *c* and *V*, shown in Fig. 4, decreased linearly as the composition *x* increasing from 0 to 1.6, and



Fig. 4 Lattice parameters, a, c, and unit cell volume V of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics

Fig. 5 SEM micrographs of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics sintered at 1300 °C for 5 h: (a) x= 0.0, (b) x=0.8, (c) x=2.0, (d) x= 0.8 sintered at 1450 °C for 5 h



**Fig. 6** The dielectric constant,  $\varepsilon$  (**a**), quality factor, Qf (**b**), of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics sintered at different temperatures



**Table 1** The microwave dielectric properties of  $Mg_4(Nb_{2-x}Sb_x)O_9$  ceramics sintered at appropriate temperatures.

| Composition <i>x</i> | Sintering<br>temperature<br>(°C) | ρ <sub>r</sub><br>(%) | ε     | Qf<br>(GHz) | τ <sub>f</sub><br>(ppm/°C) |
|----------------------|----------------------------------|-----------------------|-------|-------------|----------------------------|
| 0                    | 1400                             | 94.4                  | 13.06 | 162,350     | -70.8                      |
| 0.4                  | 1300                             | 96.0                  | 12.26 | 168,450     | -56.4                      |
| 0.8                  | 1300                             | 96.1                  | 11.62 | 169,750     | -50.4                      |
| 1.0                  | 1300                             | 96.3                  | 11.02 | 92,120      | -52.7                      |
| 1.2                  | 1400                             | 94.7                  | 10.14 | 33,250      | -37.1                      |
| 1.6                  | 1400                             | 73.2                  | 6.28  | 8,670       | -40.1                      |
| 2.0                  | 1400                             | 62.1                  | 5.22  | 13,460      | -18.1                      |

then departed from liner relation as x > 1.6. Thus, the limit of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> solid solutions is located at composition x=1.6, in agreement with reference [8].

Figure 5 shows the surface micrographs of the as-sintered Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics for x=0, 0.8, and 2.0, respectively. As sintered at 1300 °C, the homogeneously fine microstructures were revealed for Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub> ceramics [Fig. 5(a)]. The grain size of this composition is distributed around 0.6–1 µm. For the specimens with x=0.8 and sintered at 1300 °C, the dense microstructures without porosity shows the average grain size of about 3 µm [Fig. 5(b)]. As for x=2.0, the microstructures of Mg<sub>4</sub>Sb<sub>2</sub>O<sub>9</sub> ceramics shown in Fig. 5(c) are completely packed by plate-like grains isolated by pores. As the sintering temperature increased up to 1450 °C, as shown in Fig. 5(d), the abnormal grain growth was observed for the Mg<sub>4</sub>(Nb<sub>1.2</sub>Sb<sub>0.8</sub>)O<sub>9</sub> , which is in agreement with an obvious decrease of density shown in Fig. 1.

Figure 6 shows the dielectric constant,  $\varepsilon$ , and Qf value of  $Mg_4(Nb_{2-x}Sb_x)O_9$  ( $0 \le x \le 2$ ) ceramics as a function of the composition *x* for various sintering conditions. As shown in Fig. 6(a), the  $\varepsilon$  values of sintered ceramics decrease from 13.06 to 6.28 as *x* increases from 0 to 1.6. In Fig. 6(b), the Qf value of  $Mg_4(Nb_{2-x}Sb_x)O_9$  ceramics is dependent on the compositions *x* and sintering temperatures. After sintering at 1300 °C, the Qf values of  $Mg_4(Nb_{2-x}Sb_x)O_9$  ceramics increase from 42,000 to 168,450 GHz as the composition *x* ranges from 0 to 0.4. The Qf values of  $Mg_4(Nb_{2-x}Sb_x)O_9$  ceramics with x=0.4 and 0.8 sintered at 1300 °C are comparable to those of  $Mg_4Nb_2O_9$  ceramics sintered at 1400 °C.

However, for  $x \ge 1.2$ , Sb suppresses the Qf values due to the formation of plate-like grains, pores, abnormal grain growth, and impurity phases mentioned above.

The temperature coefficients of resonant frequency,  $\tau_{\rm f}$  of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ceramics sintered at appropriate temperatures are given in Table 1. As the composition *x* increases, the  $\tau_{\rm f}$  values increase. The  $\tau_{\rm f}$  values of all specimens have shown large negative values. The Mg<sub>4</sub>(Nb<sub>1.6</sub>Sb<sub>0.4</sub>)O<sub>9</sub> ceramics sintered at 1300 °C for 5 h has the optimum microwave dielectric properties of  $\varepsilon$ =12.26, Qf=168 450 GHz (at 8.714 GHz), and  $\tau_{\rm f}$ =-56.4 ppm/°C

# 4 Summary

The Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> ( $0 \le x \le 2$ ) ceramics were prepared by a conventional solid reaction method. Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>)O<sub>9</sub> solid solutions with composition *x* ranging from 0 to 1.6 had the ordered corundum structure of Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub>. The lattice parameters, *a*, *c* and the volume *V* of Mg<sub>4</sub>(Nb<sub>2-x</sub>Sb<sub>x</sub>) O<sub>9</sub> decreased with *x* as  $x \le 1.6$ , whereas, the impurity phase Mg<sub>11</sub>Sb<sub>4</sub>O<sub>21</sub> appeared as the composition *x* ranged from 1.7 to 1.9. With a substitution of Sb<sup>5+</sup> for Nb<sup>5+</sup> ( $0.4 \le x \le 0.8$ ), the sintering temperature of Mg<sub>4</sub>Nb<sub>2</sub>O<sub>9</sub> ceramics was reduced from 1400 to 1300 °C without degenerating the Qf values, but the dielectric constant,  $\varepsilon$ , decreased from 13.06 to 6.28 as *x* varied from 0 to 1.6. Typically, the Mg<sub>4</sub>(Nb<sub>1.6</sub>Sb<sub>0.4</sub>)O<sub>9</sub> ceramics sintered at 1300 °C for 5 h showed the optimum microwave dielectric properties:  $\varepsilon$ = 12.26, Qf=168 450 GHz (at 8.714 GHz),  $\tau_{\rm f}$ =-56.4 ppm/°C.

## Reference

- 1. N.M. Alford, S.J. Penn, J. Appl. Phys. 80, 5895 (1996)
- T. Tsunooka, M. Androu, Y.Higashida, H. Sugiura, H. Ohsato, J. Eur. Cer. Soc. 23, 2573 (2003)
- 3. S.M. Moussa, Appl. Phys. Lett. 82, 4537 (2003)
- 4. J-H. Sohn, Jpn. J. Appl. Phys. 33, 5466 (1994)
- 5. N. Kumada, K. Taki, N. Kinomura, Mat. Res. Bull. 35, 1017 (2000)
- H. Ogawa, A.Kan, A.Ishihara, Y. Higashida, J. Eur. Cer. Soc. 23, 2485 (2003)
- 7. B.W. Hakkit, P.D. Coleman, Micr. Theo. Tech. 8, 402 (1960)
- 8. A. Yoshida, J. Eur. Cer. Soc. 24, 1765 (2004)